"Do Now"

You need your textbook today!!!!!!!
Go Over Tests
<table>
<thead>
<tr>
<th>Area</th>
<th>the amt. of space a shape fills two-dimensional units²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter</td>
<td>the distance around a shape units</td>
</tr>
</tbody>
</table>
We already know how to find the area of a rectangle/square

\[5 \times 3 = 15 \]

\[A = lw \]
\[A = bh \]

Use base/height from here on
Area Addition Postulate

The area of a region is the sum of the areas of its nonoverlapping parts.
Area Congruence Postulate

If two figures are congruent, then they have the same area.

- Yellow figure: 5 x 3
- Orange figure: 5 x 3
Base vs. Height

Any side can be a base (except for trapezoids - the parallel sides must be the bases).

But not any side can be a height.

Remember, height is the perpendicular distance from the base to the opposite vertex.
Overview of today's lesson

<table>
<thead>
<tr>
<th>ConceptSummary</th>
<th>Areas of Polygons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelogram</td>
<td>Triangles</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$A = bh$</td>
<td>$A = \frac{1}{2}bh$</td>
</tr>
</tbody>
</table>
Stations
Station One: Area of Parallelograms

Key Concept: Area of a Parallelogram

Words: The area \(A \) of a parallelogram is the product of a base \(b \) and its corresponding height \(h \).

Symbols: \(A = bh \)
Station Two: Area of Triangles

Key Concept: Area of a Triangle

Words:
The area A of a triangle is one half the product of a base b and its corresponding height h.

Symbols:

$A = \frac{1}{2}bh$ or $A = \frac{bh}{2}$
Station Three: Area of Trapezoids

Key Concept Area of a Trapezoid

Words
The area A of a trapezoid is one half the product of the height h and the sum of its bases, b_1 and b_2.

Symbols

$$A = \frac{1}{2}h(b_1 + b_2)$$
Station Four: Area of Rhombi and Kites

Key Concept: Area of a Rhombus or Kite

Words: The area A of a rhombus or kite is one half the product of the lengths of its diagonals, d_1 and d_2.

Symbols: $A = \frac{1}{2}d_1d_2$
$A = \frac{1}{2} d_1 d_2$
<table>
<thead>
<tr>
<th>Area of a Parallelogram</th>
<th>Area of a Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = bh)</td>
<td>(A = \frac{1}{2} bh)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of a Rhombus / Kite</td>
<td>Area of a Trapezoid</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(A = \frac{1}{2} d_1 d_2)</td>
<td>(A = \frac{1}{2} (b_1 + b_2)h)</td>
</tr>
<tr>
<td>or (A = \frac{d_1 d_2}{2})</td>
<td>or (A = \frac{(b_1 + b_2)h}{2})</td>
</tr>
</tbody>
</table>
Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary.

1. \(\text{Perimeter} \quad P = 56 \text{ in} \)
 \[13 \text{ in} + h = 15 \text{ in} \]
 \[h = 12 \]
 \[A = bh \]
 \[A = 15(12) \]
 \[A = 180 \text{ in}^2 \]

2. \(\text{Perimeter} \quad P = 76 \text{ ft} \)
 \[20 \text{ ft} + 16 \text{ ft} = 36 \text{ ft} \]
 \[18 \text{ ft} = 36 \text{ ft} - 20 \text{ ft} \]
 \[A = bh \]
 \[A = 18(16) \]
 \[A = 288 \text{ ft}^2 \]

3. \(\text{Perimeter} \quad P = 64 \text{ cm} \)
 \[20 \text{ cm} + h = 12 \text{ cm} \]
 \[60^\circ \angle \]
 \[S = 20 \text{ cm} \]
 \[h = 10\sqrt{3} \]
 \[A = bh \]
 \[A = 12(10\sqrt{3}) \]
 \[A = 207.8 \text{ cm}^2 \]

4. \(\text{Perimeter} \quad P = 60.1 \text{ m} \)
 \[23 \text{ m} + s = 36 \text{ m} \]
 \[5 \text{ m} \]
 \[45^\circ \angle \]
 \[A = bh \]
 \[A = 23(5) \]
 \[A = 115 \text{ m}^2 \]

5. \(\text{Perimeter} \quad P = 43.5 \text{ in} \)
 \[15 \text{ in} + h = 21.5 \text{ in} \]
 \[8^2 + 15^2 = 5^2 \]
 \[175 = 25 \]
 \[h = \sqrt{150} \]
 \[A = \frac{1}{2}bh \]
 \[A = \frac{1}{2}(5)(\sqrt{150}) \]
 \[A = 20 \text{ in}^2 \]

6. \(\text{Perimeter} \quad P = 80 \text{ mm} \)
 \[20 \text{ mm} + s = 60 \text{ mm} \]
 \[12^2 + h^2 = 20^2 \]
 \[h = 16 \]
 \[16^2 + 30^2 = s^2 \]
 \[s = 34 \]
 \[A = \frac{1}{2}bh \]
 \[A = \frac{1}{2}(16)(16) \]
 \[A = 240 \text{ mm}^2 \]
Find the area of each trapezoid, rhombus, or kite.

1. \[A = \frac{1}{2} (b_1 + b_2)h = \frac{1}{2} (16 + 6) \times 12 = \frac{1}{2} \times 22 \times 12 = 132 \text{ ft}^2 \]

\[A = \frac{1}{2} d_1 d_2 = \frac{1}{2} (10)(18) = 90 \text{ m}^2 \]

ALGEBRA Find \(x \).

5. \(A = 78 \text{ cm}^2 \)

6. \(A = 96 \text{ in}^2 \)

7. \(A = 104 \text{ ft}^2 \)